

Cambridge International AS & A Level

COMPUTER SCIENCE

9608/41

Paper 4 Further Problem-solving and Programming Skills

MARK SCHEME

October/November 2021

Maximum Mark: 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 19 printed pages.

© UCLES 2021 [Turn over

October/November 2021

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2021 Page 2 of 19

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 3 of 19

Question		Answ	er	Marks
1(a)	1 mark for TopPointer 1 mark for correct data in stack			2
	TopPointer 2	Index	Data	
		[7]		
		[6]		
		[5]		
		[4]		
		[3]	(8)	
		[2]	50	
		[1]	20	
		[0]	10	

© UCLES 2021 Page 4 of 19

Question	Answer	Marks
1(b)	1 mark per bullet point	5
	Function header (and close where appropriate returning an integer)	
	Checking if stack is empty	
	• and returning -1 if it is	
	If there is data in stack, decrementing TopPointer	
	(Otherwise) returning the top Value	
	Example code:	
	VB.NET	
	Function Pop()	
	Dim Value as Integer	
	If TopPointer < 0 Then	
	Return -1	
	Else	
	Value = DataStack(TopPointer)	
	TopPointer = TopPointer - 1	
	Return Value End if	
	End II End Function	
	Python	
	def Pop():	
	if TopPointer < 0 :	
	return -1	
	else:	
	Value = DataStack(TopPointer)	
	TopPointer= TopPointer - 1	
	return Value	

© UCLES 2021 Page 5 of 19

Question	Answer	Marks
1(b)	<pre>Pascal Function Pop(): integer; var Value : integer; begin if TopPointer < 0 then Pop := -1 else Value := DataStack(TopPointer); TopPointer := TopPointer - 1; Pop := Value end;</pre>	
1(c)	 1 mark per bullet point to max 2 In a stack the last item in is the first out/LIFO and in a queue the first item in is the first out/FIFO Queue can be circular, but a stack is linear Stack only needs a pointer to the top (and can have a base pointer) and a queue needs a pointer to the front and the rear 	2

© UCLES 2021 Page 6 of 19

Question	Answer	Marks
2	 1 mark per bullet point Input mark, calculate grade and output grade on level 1 in correct order All grades below calculation Selection only on the grades and no other iteration/selection anywhere 	4
	Input mark Calculation Output grade	
	grade = A grade = B grade = C grade = D grade = U	

© UCLES 2021 Page 7 of 19

Question	Answer	Marks				
3	1 mark for each completed statement					
	FUNCTION BinarySearch(ThisArray, LowerBound, UpperBound, SearchItem: INTEGER) RETURNS INTEGER DECLARE Flag: BOOLEAN DECLARE Mid: INTEGER					
	Flag ← -2 WHILE Flag <> -1					
	Mid ← LowerBound + ((UpperBound - LowerBound) DIV 2) IF UpperBound THEN					
	RETURN -1 ELSE					
	<pre>IF ThisArray[Mid] > SearchItem THEN</pre>					
	UpperBound \leftarrow Mid - 1 ELSE					
	<pre>IF ThisArray[Mid] < SearchItem THEN</pre>					
	$\texttt{LowerBound} \leftarrow \texttt{Mid} + 1$					
	ELSE RETURN Mid ENDIF					
	ENDIF ENDIF					
	ENDWHILE ENDFUNCTION					

Question	Answer	Marks
4(a)	<pre>1 mark per clause teacher(fred) busy(fred, tuesday, 1)</pre>	2

© UCLES 2021 Page 8 of 19

Question	Answer	Marks
4(b)	<pre>1 mark for 1 correct 1 mark for all 3 days of the week correct busy(jill, monday, 1) busy(jill, tuesday, 1) busy(jill, wednesday, 1)</pre>	2
	<pre>1 mark for 1 correct 1 for the other 2 with OR busy(jill, monday, 1) OR busy(jill, tuesday, 1) OR busy(jill, wednesday, 1)</pre>	
4(c)	1 mark busy(X, monday, 3)	1
4(d)	 1 mark per bullet point Checking X is a teacher Checking Y is a timeslot, Z is a day NOT (busy (X, Z, Y)) All included, linked with ANDs and nothing superfluous 	4
	teacher(X) AND timeslot(Y) AND day(Z) AND NOT(busy(X, Z, Y))	

© UCLES 2021 Page 9 of 19

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question				Answe
5(a)	 1 mark per bullet point Output = 21 Function calls with Function calls with Unwinding the return 	Recur 102 ar	nd 102,	
	Function call	A	В	Return value
	Recursion(104, 102)	104	102	5 + Recursion(103, 102) 5 + 16
	Recursion(103, 102)	103	102	5 + Recursion(102, 102) 5 + 11
	Recursion(102, 102)	102	102	10 + Recursion(92, 102) 10 + 1
	Recursion(92, 102)	92	102	1

Page 10 of 19 © UCLES 2021

Question	Answer	Marks
5(b)	 1 mark per bullet point to max 4 Function header takes two parameters, returns the calculated value accurately (outside/end loop and in all cases) Initialising variable to 1 outside loop (or adds 1 before returning) Looping while A > 100 // looping until A <= 100 (or equivalent) checking if A > B inside loop and if true, add 5 to variable and decrement A checking if A<= B in loop and if true, add 10 to variable and A – 10 	4
	Example pseudocode:	
	FUNCTION Recursion(A, B : INTEGER) RETURNS INTEGER DECLARE Value : INTEGER	
	Value ← 1 WHILE A > 100	
	IF A > B THEN	
	Value \leftarrow Value + 5 A \leftarrow A - 1	
	ELSE	
	Value \leftarrow Value + 10 A \leftarrow A - 10	
	ENDIF ENDWHILE RETURN Value	
	ENDFUNCTION	

Question	Answer	Marks
6(a)(i)	 1 mark per bullet point Data structure to store multiple pieces of data (under one identifier) (stores data) of that can be different data types 	2

Page 11 of 19 © UCLES 2021

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
6(a)(ii)	 1 mark per bullet point record declaration named CustomerData all 3 correct data items with suitable data types (and identifiers) 	
	TYPE CustomerData DECLARE CustomerID : INTEGER DECLARE FirstName : STRING DECLARE SecondName : STRING ENDTYPE	
6(b)	<pre>1 mark per completed statement PROCEDURE StoreRecord(NewData : CustomerData) HashValue ← CustomerHash(NewData.CustomerID) Filename ← "CustomerRecords.dat" OPENFILE Filename FOR RANDOM SEEK Filename, HashValue PUTRECORD Filename, NewData CLOSE Filename ENDPROCEDURE</pre>	5
6(c)	 1 mark for naming a feature, 1 for description. Max 2 for each feature Example: Breakpoint Stop the program at a set point and check the variables Stepping/step-through etc. Execute the program one line at a time to check the values Variable watch window Displays the variable values whilst the program is running so Kobi can make sure they are changed correctly 	4

Page 12 of 19 © UCLES 2021

Question	Answer	Marks
6(d)	1 mark for benefit, 1 for drawback Benefit Example: Saves time because does not have to write own code // write program faster Programmer can have limited skills and still produce complex programs Drawback Example: May not perform the tasks exactly as required Solution is likely to be inefficient Might produce errors The programmer may not understand the solution and hence cannot edit/change	2

Question	Answer	Marks
7(a)	 1 mark per bullet point to max 2 To stop the program crashing To stop a run-time error to make sure the input is the correct data type // other reasonable example 	2

© UCLES 2021 Page 13 of 19

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
7(b)	 1 mark per bullet point Using try (and close where appropriate) followed by the input Catching exception Outputting appropriate message (built-in or otherwise) 	3
	<pre>Example program code: VB.NET Try Dim Value As Integer Console.WriteLine("Enter a number") Value = Console.ReadLine() Catch ex As Exception Console.WriteLine(ex.Message) End Try Python try: Value = int(input("Enter a number")) except:</pre>	
	<pre>print("Invalid number") Pascal: begin try readln(Value); except On E : Exception do writeln("Invalid number"); end;</pre>	
7(c)	 1 mark per example Check file exists No input No data in file Array out of bounds Calculation / division by 0 	2

© UCLES 2021 Page 14 of 19

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question					Ans	swer	
8(a)	1 mark for row 1 mark for nu		n index 0, 1 and ters set to −1	3			
			Index	LeftPointer	Data	RightPointer	
	RootNode	0	[0]	3	50	1	
			[1]	6	67	2	
			[2]	-1	77	-1	
			[3]	4	35	5	
			[4]	-1	2	-1	
			[5]	-1	43	-1	
			[6]	-1	52	-1	
			[7]	-1		-1	
			[8]	-1		-1	
			[9]	-1		-1	
			[10]	–1		-1	

© UCLES 2021 Page 15 of 19

Question	Answer	Marks
8(b)	<pre>1 mark for each completed statement PROCEDURE PostOrder(RootNode : INTEGER) IF BinaryTree[RootNode, 0] <> -1 THEN PostOrder(BinaryTree[RootNode, 0]) ENDIF IF BinaryTree[RootNode, 2] <> -1 THEN PostOrder(BinaryTree[RootNode, 2]) ENDIF OUTPUT(BinaryTree[RootNode, 1]) ENDPROCEDURE</pre>	5

Question	Answer	Marks
9(a)	 1 mark per bullet point array named StoredData of type integer with 10 000 elements, index 0-9999 All elements initialised with -1 	3
	Example pseudocode	
	DECLARE StoredData : ARRAY[0:9999] OF INTEGER FOR X ← 0 to 9999 StoredData[X] ← -1 NEXT X	
9(b)	1 mark per bullet point to max 7	7

© UCLES 2021 Page 16 of 19

Question	Answer	Marks
9(b)	 Function declaration (and end where appropriate) taking data as (integer) parameter (returns Boolean) Calculate hash: parameter mod 1000 + 6 	
	Check if StoredData[hashed value] = −1	
	 if it is –1, store data at hash and return true 	
	 if not –1, increment/decrement hashed value by 1 if reached index 9999 return to index 0 // checking and going to 9999 if not at 0 repeatedly decrement until either found or all elements checked returning False if full and True when stored 	
	Example program code VB.NET Function AddItem(DataToAdd) Dim Location As Integer Dim Found As Boolean Dim Counter As Integer	
	Location = (DataToAdd Mod 1000) + 6 If StoredData(Location) <> -1 Then Found = False Counter = 0 While Found = False And Counter < 9999 Location = Location + 1 If Location > 9999 Then Location = 0 End If If StoredData(Location) = -1 Then	
	Found = True End If Counter = Counter + 1 End While	

© UCLES 2021 Page 17 of 19

Question	Answer	Marks
9(b)	If Found = True Then	
` ,	StoredData(Location) = DataToAdd	
	Return True	
	Else	
	Return False	
	End If	
	Else	
	StoredData(Location) = DataToAdd	
	Return True	
	End If	
	End Function	
	Python	
	<pre>def AddItem(DataToAdd):</pre>	
	Location = (DataToAdd % 1000) + 6	
	if StoredData[Location] <> -1:	
	Found = False	
	Counter = 0	
	while Found == False and Counter < 9999:	
	Location = Location + 1	
	if Location > 9999:	
	Location = 0	
	if StoredData[Location] == -1:	
	Found = True	
	Counter = Counter + 1	
	if Found == True:	
	StoredData[Location] = DataToAdd	
	return True	
	else:	
	return False	
	else:	
	StoredData[Location] = DataToAdd	
	return True	

© UCLES 2021 Page 18 of 19

Question	Answer	Marks
9(b)	Pascal	
	function AddItem(DataToAdd:Integer):Boolean;	
	begin	
	Location := (DataToAdd mod 1000) + 6;	
	if StoredData[Location] <> -1 then	
	begin	
	Found := false;	
	Counter := 0;	
	while (Found = false) and (Counter < 9999) do	
	begin	
	Location := Location + 1;	
	if Location > 9999 then	
	Location := 0;	
	if StoredData[Location] = -1 then	
	<pre>found := true;</pre>	
	Counter := Counter + 1;	
	end;	
	if Found = true then	
	begin	
	StoredData[Location] := DataToAdd;	
	AddItem := True;	
	end	
	Else	
	begin	
	AddItem := False;	
	end;	
	end	
	else	
	begin StoredData[Logation] . DataWalld.	
	StoredData[Location] := DataToAdd;	
	<pre>AddItem := True; end;</pre>	
	end;	1
	ena;	

© UCLES 2021 Page 19 of 19